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ABSTRACT
We propose a regularized nonnegative tensor factorization (NTF)
model for multi-channel speech dereverberation that incorporates
prior knowledge about clean speech. The approach models the prob-
lem as recovering a signal convolved with different room impulse
responses, allowing the dereverberation problem to benefit from mi-
crophone arrays. The factorization learns both individual rever-
beration filters and channel-specific delays, which makes it possi-
ble to employ an ad-hoc microphone array with heterogeneous sen-
sors (such as multi-channel recordings by a crowd) even if they are
not synchronized. We integrate two prior-knowledge regularization
schemes to increase the stability of dereverberation performance.
First, a Nonnegative Matrix Factorization (NMF) inner routine is
introduced to inform the original NTF problem of the pre-trained
clean speech basis vectors, so that the optimization process can fo-
cus on estimating their activations rather than the whole clean speech
spectra. Second, the NMF activation matrix is further regularized to
take on characteristics of dry signals using sparsity and smoothness
constraints. Empirical dereverberation results on different simulated
reverberation setups show that the prior-knowledge regularization
schemes improve both recovered sound quality and speech intelli-
gibility compared to a baseline NTF approach.

Index Terms— multi-channel dereverberation, nonnegative ma-
trix factorization, nonnegative tensor factorization, collaborative au-
dio enhancement, speech enhancement

1. INTRODUCTION

Collaborative audio enhancement methods recover a clean signal
from multiple low-quality recordings, each of which retains ele-
ments of the common desired signal while also being corrupted in
some way. Removal of common distortions in crowdsourced record-
ings such as clipping, additive noise, and bandlimiting has been ad-
dressed in [1, 2, 3]. We add to the collaborative-audio-enhancement
toolbox by proposing a model that reduces reverberation. Reverber-
ation decreases a signal’s perceptual audio quality, and is of concern
in applications such as automatic speech recognition.

We formulate dereverberation as link prediction, modeling a re-
verberant signal as a frequency-domain convolution of a clean signal
with different unknown Room-Impulse Responses (RIRs) as shown
in (1), where we introduce ~ for simplicity of notation of subband-
wise convolution:

X(i) = H(i) ~ S ⇐⇒ X
(i)
f,t =

L−1∑
p=0

H
(i)
f,pSf,t−p. (1)

In this equation, S,X(i) ∈ RF×T+ denote the magnitude STFTs of
the clean signal and i-th channel of the input signal, respectively.
H(i) ∈ RF×L+ is the magnitude STFT of the i-th channel RIR.
Therefore, the multi-channel data in X and H is represented as
three-dimensional tensors whose third axis— the channels—is in-
dexed by the superscript (i).

This model approximates the complex-domain convolution the-
orem in the magnitude domain and applies to the case where the RIR
lasts multiple Discrete Fourier Transform (DFT) frames. Our fram-
ing of the search for an unknown common element across multiple
signals as link prediction is similar to that of Ermiş et al. [4], who
demonstrate the ability of a tensor factorization model to effectively
harness information in large-scale data.

The NTF-based formulation applied to the model in (1) has been
shown to be effective in dereverberation. Mirsamadi et al. [5]
demonstrate improvements in automatic speech recognition results
over the single-channel baseline [6]. Our model builds on this ten-
sor factorization approach, noting in passing the probabilistic multi-
channel models proposed by [7, 8, 9].

Although each channel-specific signal recovery can benefit from
the shared component, direct estimation of a large speech spectro-
gram is challenging. In reverberant recordings, longer RIRs span
multiple DFT frames, while tensor factorization models assume in-
dependence between frames. The convolution involved in reverber-
ation results in a large number of unknown parameters. This issue is
exacerbated by the underdetermined nature [10] of a tensor factor-
ization model. Many ways of incorporating prior knowledge about
the source have been used to restrict the solution space and improve
the results of speech dereverberation. A common approach is to
use the `1- or `2-norm sparsity constraint to enforce the character-
istics of dry speech [11, 12]: such models treat every frame inde-
pendently. Nakatani et al. [13] propose a time-dependent model
that captures the relationship between neighboring frames by pa-
rameterizing the variance between nearby frames in an expectation-
maximization framework.

Mohammida et al. [14] improve sparse convolutive single-
channel dereverberation by further factorizing the shared speech
spectrogram by using Nonnegative Matrix Factorization (NMF).
They either train basis vectors online from the source estimate, or
pre-train them offline on speaker-independent clean-speech data.
The use of clean-speech basis vectors pre-trained offline is a com-
mon technique in matrix factorization [15]. Mohammida et al.’s
integrated method yields a considerably higher speech quality than
both the baseline convolutive approach and a state-of-the-art spec-
tral enhancement method [16, 17]. We adapt this method of nesting
NMF inside of a matrix factorization to the NTF model for analyzing



multi-channel signals.
The multi-channel speech dereverberation approach [5] seeks to

minimize the objective function (2) to learn estimates for the filter
tensor H and clean signal S:

J0 =
∑
i

∥∥∥X(i) − Z(i)
∥∥∥2
F
, Z(i) = H(i) ~ S (2)

The objective function represents Euclidean distance between the re-
verberant input signals X and their approximations Z using the esti-
mates of the clean signal and filters. Like regular NMF [18], it uses
multiplicative update rules to ensure nonnegativity of parameters.

The model shown in (2) offers two advantages: scalability and
robustness to issues such as misalignment. It is scalable to unknown
geometric configurations of the source and sensors thanks to its un-
supervised nature. Also, it is robust to issues such as misalignment
common to crowdsourced recordings due to the fact that source-to-
sensor distances vary between sensors and are unknown. Other ap-
proaches to alignment of the signals— such as cross-correlation—
are not always applicable because the RIRs make the channel wave-
forms differ significantly from each other. The NTF model automati-
cally aligns the signals in time by adjusting the RIR filter H for each
channel. It also automatically gives lower weights to bad quality
recordings and can address issues such as bandlimiting by zeroing
out corresponding frequencies in the filter.

Two concerns arise from the large number of equivalent factor-
ization processes permitted by this model. The model given by (2)
risks a trivial solution where H represents a filter where all but the
first column is zero-valued, with S an averaged reverberant signal.
Also, direct estimation of S means that the number of parameters to
be learned can become very large. Our objective is to address these
concerns.

2. MODEL DEVELOPMENT

In this section, we develop a model that integrates NTF and NMF to
dereverberate sound in the multi-channel case. To this model we in-
corporate prior knowledge about clean speech in order to reduce the
number of equivalent factorizations. We cut down on the number of
parameters in the activation matrix by factorizing the shared speech
spectrogram using a fixed-basis vector array pre-learned from dry
speech. We then regularize the NTF problem by enforcing the struc-
ture of the activation matrix to correspond to that of a clean signal.
This ensures that the model represents the reverberation in the esti-
mated reverberation filters H, not in S. Although we impose sparsity
on the NMF activations, the additional total variation constraint on
them enhances the smoothness of the activations over time, a com-
monly used technique in computer vision [19, 20].

Specifically, instead of directly estimating the clean signal S, we
set S ≈WA, where W ∈ RF×R+ and A ∈ RR×T+ . The lower rank
approximation R < F, T is common. W is a previously trained
NMF basis vectors to represent clean speech sound. Given that W is
fixed, we then only need to estimate the activation matrix A, which
reduces the number of parameters that need to be learned from F×T
to R× T .

Finally, we use the generalized KL-divergence in our objective
function. This metric has been demonstrated by King et al. [21] to
produce better results in NMF applications to audio source separa-
tion than the Frobenius norm.

2.1. Objective function

The KL-divergence with additional constraints on A forms our new
objective function Jp:

Jp =
∑
i

∥∥∥∥X(i) log
X(i)

Z(i)
−X(i) + Z(i)

∥∥∥∥
1

+ γΨ(A) + ζΦ(A),

(3)
where we define

Z(i) = H(i) ~ [WA], (4)

Ψ(A) =
∑
i,j

log(Ai,j + ε), (5)

Φ(A)=
∑
i,j

|Ai,j+1−Ai,j |2=‖AL‖2F , Li,j=

+1 if i=j+1
−1 if i = j

0 otherwise
(6)

respectively. Note that (4) is similar to the reconstruction in (2),
except that S is replaced by its NMF approximation S ≈ WA.
The values of γ and ζ control the contribution of the constraints to
the objective function. Given that every basis component in W is
activated separately, the constraints used in the objective function
apply to the rows of A.

• Sparsity: The sparsity cost Ψ in (5) described in [22] is the sum
of the logarithms of the row-wise products of A. This constraint is
equivalent to L1 norm regularization. A small value ε is added to
the argument to avoid zero-values. Minimizing this cost encourages
most of the energy to be distributed in fewer bins.

• Total Variation: The sparsity constraint alone can result in “gaps”
in the activation matrix, given that it does not take the smoothness
between adjacent bins into consideration. The total variation con-
straint Φ in (6), a computer vision technique used for denoising
[19, 20], is also adapted here to address this issue by minimizing
variation between row-wise adjacent bins. It consists of minimizing
the norm of the product of A first-order derivative operator L.

Fig. 1 compares the estimate of A learned (a) directly from a
clean signal and (b) from a reverberant signal. The reverberant case
is much less sparse than the clean case, as the reverberant activations
decrease slowly instead of quickly vanishing. In (c) we see that the
NTF baseline with the proposed inner NMF routine recovers A with
a significant amount of discontinuity, which can be partly addressed
by introducing sparsity as in (d). But, eventually with the additional
total variation constraint we can recover A that is most similar to
(a).

2.2. Multiplicative update rules

As in many other NMF-related algorithms, we first calculate the gra-
dients for the parameters H and A, then choose the step sizes so that
the gradient descent updates turn into multiplicative update rules:

H̃(i) ← H̃(i) �

←→
X(i)

←→
Z(i)

~ [WA]

1~ [WA]
, H(i) ← H̃

(i)
:,T−1:T−1+p, ∀i,(7)

A← Ã�
W>∑

i

←→
H(i) ~X(i)

Z(i) + ζ min
(
Ã(LL>),0

)
W>

∑
i

←→
H(i) ~1 + γ

Ã+ε
+ ζ max

(
Ã(LL>),0

) ,
A← Ã:,L−1:L−1+T , (8)



(a) (b) (c) (d) (e)

Fig. 1. Appearance of activation matrix A learned using (a) NMF directly on clean speech (b) NMF directly on reverberant speech (c) NTF
baseline with no constraints (d) NTF with sparsity constraint only (e) NTF with both sparsity and total variation constraints (proposed).

where � denotes the Hadamard product. Another important new

notation
←→
X(i) indicates the left-right flipping operation, i.e.

←→
X(i)=

[X
(i)
:,T−1,X

(i)
:,T−2, · · · ,X

(i)
:,0 ], which is a procedure to make sure the

use of ~ in the update rules is for deconvolution as opposed to that
in (1). We can also see that the gradient of total variation, A(LL>)
is separated into its negative components in the numerator and its
positive components in the denominator by using the element-wise
min and max functions. Note that the division is also element-wise.
1 and 0 are the matrix of 1’s and 0’s whose sizes are F ×T andR×
T . After every update, we have an estimation of the filter H̃(i) and
the NMF activation Ã that are with zero padding in the beginning
due to the delays, i.e. H̃(i) =

[
0,H(i)

]
and 0 here has dimensions

F×(T−1) and Ã = [0,A] and 0 here has dimensionsR×(L−1).
Hence we discard them after every update by a shifting operation.

An additional constraint addresses the scaling indeterminacy of
the model. As introduced in [5], we normalize the filter estimate H

at every iteration:
∑
f H

(i)
f,p = 1. This constraint causes the signals

that differ more from the rest to be weighted less, thus improving the
overall result.

3. EXPERIMENT

3.1. Room, source and sensor configurations

We generated RIRs using the roomsimove toolbox [23]. This pro-
gram implements the image method [24], which simulates the RIR of
a rectangular room. We simulated three rooms, with T60 reverber-
ation times approximately 0.6, 1.2, and 1.6 seconds, values which
are challenging for applications such as automatic speech recogni-
tion. In each room, we fixed the source at 75 per cent of the width
and 50 per cent of the height of the room. In order to simulate the
crowdsourced scenario where the sensors are not equidistant from
the source causing the signals to be misaligned, we generated 40
random four-channel sensor configurations for each room, making
sure that each sensor was at least one meter away from the other
sensors and from the source.

3.2. Input data and parameter settings

The RIRs were convolved with a clean signal from the TIMIT dataset
[25] to generate the reverberant input signals. The prior clean-speech
components W were learned in advance from 200 utterances from

the TIMIT dataset, with the same speaker gender and accent region
as the input, but not including the input. The number of basis vectors
was set to R = 40. For each of the 120 room-sensor configurations,
we applied the three different dereverberation algorithms: (1) the
NTF baseline using KL-divergence as our objective function, which
is a slight modification of [5] (2) the NTF model using the speech
prior for a further factorization (3) the NTF model using the speech
prior as well as the sparsity and total variation regularization. The
regularization parameters for the third case, γ, ε and θ, were fixed
to a single value for all three T60 settings to simulate the scenario
where the T60 time is unknown. Values that were empirically shown
to produce the best results according to SNR and STOI were γ =
10−6, ε = 10−5 and ζ = 1.1 The large value of ζ indicates that the
total variation constraint needed a high weight to avoid gaps between
frames.

A was initialized using small nonnegative random values. H(i)

was initialized as H(i)
f,p ← 1−p/2L+α, (f = 0, ..., L−1), where

α is a small nonnegative random value, based on the assumption that
the earlier arrivals are louder.

3.3. Data pre- and post-processing

The input signals were standardized, and then multiplied by a nor-
malizing constant 0.01. The STFT frame size was set to 64 ms and
the hop size to 32 ms. This pre-processing makes the algorithm per-
form more consistently given other parameters. Additionally, it does
not hinder the model from assigning higher weights to the channels
in H depending on their similarity to the other channels, thus reduc-
ing the error introduced by anomalous low quality input signals.

The phase of the clean signal spectrogram was estimated both
using the phase of an input signal chosen at random and the Griffin-
Lim algorithm [26]. Neither estimate is ideal and results were simi-
lar using either approach. This difficulty highlights the usefulness of
deriving a complex-valued NMF model for the problem [27].

4. EVALUATION

Table 1 displays average Short-Term Objective Intelligibility (STOI)
and Signal-to-Noise Ratio (SNR) for reverberant input signals in the
three T60 scenarios, and for clean-speech reconstructions using (1)

1These values depend on the magnitude of the input signal. In our exper-
iment, the data was normalized as described in 3.3.



Table 1. Average STOI and SNR results over 40 random sensor configurations per T60 value.
T60 0.6 sec. 1.2 sec. 1.6 sec.

Reverberant SNR −1.90 −2.19 −2.12
input (average) STOI 0.66 0.55 0.53
NTF baseline SNR −2.03 (−0.13) −1.93 (+0.26) −1.82 (+0.30)
(with KL-div) STOI 0.61 (−0.05) 0.61 (+0.06) 0.61 (+0.08)

NTF with SNR −1.79 (+0.11) −1.85 (+0.34) −1.65 (+0.47)
speech prior STOI 0.75 (+0.09) 0.69 (+0.14) 0.67 (+0.14)

NTF w/ speech prior SNR −1.57 (+0.33) −1.74 (+0.45) −1.64 (+0.48)
and regularization STOI 0.77 (+0.11) 0.72 (+0.17) 0.69 (+0.16)

(a) (b) (c)
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Fig. 2. Performance based on the variance of the sensor-to-source distance.

the NTF baseline using KL-divergence as our objective function, (2)
the NTF model using the speech prior (3) the NTF model using the
speech prior with regularization. Given that the delay between re-
verberant signals and the clean signal is unknown, we aligned the
reverberant signals using cross correlation for the evaluation. Re-
sults show an increase in quality from deploying the baseline model,
then further significant improvements first when adding the prior,
and then when adding the regularization. The baseline multichan-
nel model only improves the quality of the signal when T60 is long
enough. The proposed model, however, increases the quality even
in the shortest case of 0.6 seconds. These measured improvements
were obtained despite artifacts introduced in the form of missing
phase information: a model that properly estimates phase would
most likely further improve the quality of the output.2

Fig. 2 displays how the variance of distances from the source
to the sensors affects performance. We can see that the proposed
method performs consistently across different scenarios, lending it-
self to recordings with ad-hoc microphone arrays.

2Input and reconstructed signals can be heard at http:
//homes.sice.indiana.edu/scwager/collaborative_
dereverberation.html

5. CONCLUSION

We develop an NTF model for multichannel speech dereverberation
with integrated NMF of the dry source estimate. The speech source
estimation common across channels anchors dereverberation tasks.
The filter matrices provide estimates of the sensor-wise RIRs, and
the inner factorization estimates the dry source spectrogram. To
avoid the model’s converging at an unattractive local minimum—
such as the source learning reverberation instead of the filter—we
introduce source prior knowledge through regularization, smooth-
ing, and clean-speech basis vectors. The resulting decomposition of
the source estimate focuses the model on estimating the activations.
Regularization on the NMF activations imposes sparsity using the
`1-norm to reduce reverberation by penalizing the spread of energy
over time, and imposes smoothness using the total variation con-
straint to avoid discontinuities in energy across frames.

This algorithm learns a magnitude-domain estimate of the clean
signal and of the RIR filters. Next steps include deriving the com-
plex tensor factorization version of this work to avoid the artifacts
induced by the lack of phase information. This work contributes to
the set of algorithms available for collaborative audio enhancement.



6. REFERENCES

[1] M. Kim and P. Smaragdis, “Collaborative audio enhancement
using probabilistic latent component sharing,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2013, pp. 896–900.

[2] ——, “Efficient neighborhood-based topic modeling for
collaborative audio enhancement on massive crowdsourced
recordings,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2016, pp. 41–45.

[3] N. Stefanakis and A. Mouchtaris, “Maximum component elim-
ination in mixing of user generated audio recordings,” in
IEEE International Workshop on Multimedia Signal Process-
ing, 2017.
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